Partial Solution Set, Leon §4.1

- **4.1.1** For each of five transformations, we are to verify linearity and describe geometrically the effect of the transformation. Verification is straightforward for all; a sketch might make it easier to see what's going on geometrically.
 - (a) $L(\mathbf{x}) = (-x_1, x_2)^T$. Verifying linearity is simple: we simply show that

$$L(\alpha \mathbf{x} + \mathbf{y}) = (-\alpha x_1 + y_1, \alpha x_2 + y_2)^T$$

$$= (-\alpha x_1, \alpha x_2)^T + (y_1, y_2)^T$$

$$= \alpha (x_1, x_2)^T + (y_1, y_2)^T$$

$$= \alpha L(\mathbf{x}) + L(\mathbf{y}).$$

The geometric effect is reflection across the x_2 -axis.

- (c) Reflection across the identity line $x_1 = x_2$.
- (e) Projection onto the x_2 -axis.
- **4.1.2** Let L be the linear transformation mapping \mathbb{R}^2 into itself defined by

$$L(\mathbf{x}) = (x_1 \cos \alpha - x_2 \sin \alpha, x_1 \sin \alpha + x_2 \cos \alpha)^T.$$

Express x_1, x_2 , and $L(\mathbf{x})$ in terms of polar coordinates. Describe geometrically the effect of the linear transformation.

Solution: Rewriting in terms of polar coordinates, we have $x_1 = r \cos \theta$ and $x_2 = r \sin \theta$, where $r = \sqrt{x_1^2 + x_2^2}$ and $\theta = \arctan(x_2/x_1)$. But now we have

$$L(\mathbf{x}) = (x_1 \cos \alpha - x_2 \sin \alpha, x_1 \sin \alpha + x_2 \cos \alpha)^T$$

= $(r \cos \theta \cos \alpha - r \sin \theta \sin \alpha, r \cos \theta \sin \alpha + r \sin \theta \cos \alpha)^T$
= $(r \cos(\theta + \alpha), r \sin(\theta + \alpha))^T$,

from which we see that the original vector has been rotated counterclockwise through an angle α .

4.1.3 Let **a** be a fixed nonzero vector in \mathbf{R}^2 . A mapping of the form $L(\mathbf{x}) = \mathbf{x} + \mathbf{a}$ is called a *translation*. Show that a translation is not a linear transformation. Illustrate geometrically the effect of a translation.

Solution: The verification that L is nonlinear is easy:

$$L(\alpha \mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \mathbf{y} + \mathbf{a}$$

$$\neq \alpha(\mathbf{x} + \mathbf{a}) + (\mathbf{y} + \mathbf{a})$$

$$= \alpha L(\mathbf{x}) + L(\mathbf{y}).$$

The geometric effect is to shift the line containing \mathbf{x} away from the origin, the distance and direction of the shift determined by the length and direction of \mathbf{a} . In the event that \mathbf{a} and \mathbf{x} are collinear, the shifted line still passes through the origin, but the transformation is nonetheless nonlinear, as shown by the preceding step.

- **4.1.6** Determine whether the following are linear transformations from \mathbb{R}^2 into \mathbb{R}^3 .
 - (a) $L(\mathbf{x}) = (x_1, x_2, 1)^T$. This is nonlinear, since

$$L(\alpha \mathbf{x}) = (\alpha x_1, \alpha x_2, 1)^T \neq (\alpha x_1, \alpha x_2, \alpha)^T = \alpha L(\mathbf{x}).$$

(c) $L(\mathbf{x}) = (x_1, 0, 0)^T$. This is linear, since

$$L(\alpha \mathbf{x} + \mathbf{y}) = (\alpha x_1 + y_1, 0, 0)^T = \alpha (x_1, 0, 0)^T + (y_1, 0, 0)^T = \alpha L(\mathbf{x}) + L(\mathbf{y}).$$

4.1.14 Let L be a linear operator mapping a vector space V into itself. Recursively define L^n , by $L^1 = L$ and $L^{n+1}(\mathbf{v}) = L(L^n(\mathbf{v}))$ for all $n \ge 1$ and all $\mathbf{v} \in V$. Show that L^n is a linear operator on V for each $n \ge 1$.

Proof: The proof is by induction on n. By definition of L^n , the result holds for n = 1. Let $\mathbf{u}, \mathbf{v} \in \mathbf{R}$, let α be a scalar, and let $k \geq 1$. Then

$$L^{k+1}(\alpha \mathbf{u} + \mathbf{v}) = L(L^{k}((\alpha \mathbf{u} + \mathbf{v}))$$

$$= L(\alpha L^{k}(\mathbf{u}) + L^{k}(\mathbf{v}))$$

$$= \alpha L(L^{k}(\mathbf{u})) + L(L^{k}(\mathbf{v}))$$

$$= \alpha L^{k+1}(\mathbf{v}) + L^{k+1}(\mathbf{v}), \text{ and we're done.}$$

4.1.15 Let $L_1: U \to V$ and $L_2: V \to W$ be linear transformations and let $L = L_2 \circ L_1$ be the mapping defined by $L(\mathbf{u}) = L_2(L_1(\mathbf{u}))$ for each $\mathbf{u} \in U$. Show that L is a linear transformation mapping U into W.

Solution: That L is a mapping from U into W follows from elementary properties of functions. We must show that L is linear. So let $\mathbf{u}_1, \mathbf{u}_2 \in U$, and let α be a scalar. Then

$$L(\alpha \mathbf{u}_1 + \mathbf{u}_2) = L_2 (L_1(\alpha \mathbf{u}_1 + \mathbf{u}_2))$$
 (Definition of L)

$$= L_2 (\alpha L_1(\mathbf{u}_1) + L_1(\mathbf{u}_2))$$
 (linearity of L_1)

$$= \alpha L_2 (L_1(\mathbf{u}_1)) + L_2 (L_1(\mathbf{u}_2))$$
 (linearity of L_2)

$$= \alpha L(\mathbf{u}_1) + L(\mathbf{u}_2)$$
 (Definition of L .)

- **4.1.16** Determine the kernel and range of each of the following linear transformations from \mathbb{R}^3 into itself.
 - (a) $L(\mathbf{x}) = (x_3, x_2, x_1)^T$. The kernel is the zero vector from \mathbf{R}^3 , since $L(\mathbf{x}) = \mathbf{0}$ if and only if $x_1 = x_2 = x_3 = 0$. The range is all of \mathbf{R}^3 : let $\mathbf{y} = (y_1, y_2, y_3)^T \in \mathbf{R}^3$. Then $\mathbf{y} = L\left((y_3, y_2, y_1)^T\right)$, so L is an onto mapping.

(c) $L(\mathbf{x}) = (x_1, x_1, x_1)^T$. The kernel contains all vectors of the form $(0, x_2, x_3)$, and is therefore a two-dimensional subspace of \mathbf{R}^3 . The range is Span $((1, 1, 1)^T)$.